

Possibilities and challenges for PFAS analysis

Anna Kärrman MTM Research Centre, Örebro University, Sweden

PFAS Contaminated sites risk-assessment 2020-11-09

Different forms of fluorine

most common form found in nature

Natural occuring organofluorine

E.g.

- *CaF*₂
- NaF
- Na_2PO_3F

E.g.

- Trifluoromethane
- Fluoroacetate
- Fluorinated fatty acids

Antropogenic organofluorine

E.g.

- PFAS
- Pharmaceuticals
- Agrochemicals

Per- and polyfluoroalkyl substances (PFAS)

4730 PFASs (CAS-numbers, OECD definition 2018)

Perfluoroalkyl acids (PFAA)

Examples:

$$F + \left(CF_2 + \int_{n}^{O} \int_{O}^{n} OH \right)$$

Precursors

Examples of precursors to PFSA:

Example of precursors to PFCA:

PFCA

<u>Others</u>

Polymers:

What are being monitored, and why?

What? Why? • Comply to regulations • Study health effects and impacts • Study removal efficiency in WWTP, drinking water, remediation,... • Study environmental distribution and fate Occurrence of (new) PFAS in • products, environment, humans,...

Example from waste water treatment

PFAS11:
BA
PeA
HxA
НрА
DA
NA
DA
BS
HxS
OS
FTSA

Example from waste water treatment

∑PFAS11:
BA
PeA
HxA
НрА
OA
NA
DA
BS
HxS
OS
2 FTSA

∑PFAS75:
PFCAs
PFSAs
Precursors: PAPs, FTSAs, FTUCA, FTCA FOSA, FOSAA, diSamPAP, PFPA/PFPiA
ADONA, HFPO- DA, PFECHS, F53B

Analytical possibilities

Target analysis

PFAA and selected precursors:

- Sensitive (ppt-levels) and specific ullet
- Routine measurement of ~40 PFAS lacksquare
- Further challenges: lacksquare
 - increase physicochemical range to be more inclusive
 - commercial standards \bullet
- Is it possible to target all PFAS? ullet

Profile analysis

■ ∑PFAS 11 ■ ∑PFAS20 ■ ∑PFAS25 ■ ∑PFAS 54 ■ ∑PFAS 64 ■ ∑PFAS 70 ■ ∑PFAS 73

Profiles in environmental compartments

- surface water
- soil
- ground water
- Biota

Profiles from different contamination sources :

- historical AFFF
- recent AFFF
- ski wax
- paper treatment
- textile treatments
- etc.

Suspect and nontarget screening

- Increasingly used to detect known unknowns lacksquare(suspects), or unknowns (nontargeted)
- Limited possibilities for quantitative analysis lacksquare
- Automation challenges for data mining and • reduction
 - mass defects \bullet
 - fragment flagging \bullet
 - suspect lists lacksquare

Extractable organofluorine (EOF)

- Measure the elemental fluorine in an \bullet extract
- Possibilities to separate and fractionate ulletdifferent classes
 - High selectivity towards \bullet organofluorine after removing inorganic fluorine

INUKGA
FLUOR

	E
0	R

Results depends on the extraction • method

Fluorine mass balance to show possible unidentified PFAS

Comparing EOF with target PFAS can indicate presence of unknowns

Mass balance = C_F target / C_F EOF

- no information on identity of unknowns
- measuring F is less sensitive than target PFAS

Total fluorine

Indicates the presence of fluorine

- Combustion lacksquare
 - Pyrolysis (1000-1100 $^{\circ}$ C) and thermal oxidation followed \bullet by fluoride measurement by ion chromatography pr ion selective electrode ORGANOFLUORINE
- Surface analysis ullet
 - Particle Induced Gamma-ray Emission (PIGE) spectroscopy \bullet
 - surface 100–250 µm ۲
 - X-ray photoelectron spectroscopy (XPS) \bullet
 - surface ≤0.1 µm

INORGANIC

FLUORINE

Total fluorine

- Combustion
 - Inclusive for all elemental fluoride
 - Less sensitive (0.1-0.5 ppm F) than targeted analyses
- Surface analysis
 - Particle Induced Gamma-ray Emission (PIGE) spectroscopy
 - High-throughput
 - Non-destructive
 - Less sensitive (50 nmol F/cm²) than targeted analyses
 - X-ray photoelectron spectroscopy (XPS)
 - High-throughput
 - Widely-available instrumentation
 - Identification of perfluoroalkyl moiety
 - Detection limit 1%

X-ray photoelectron spectroscopy

Total oxidizable precursor (TOP) assay

Chemical reaction of a *sample** or a *sample extract* converts precursors to perfluoroalkyl acids

*mainly aqueous samples

Total oxidizable precursor (TOP) assay

- Sensitive analysis (ppt-levels) after successful \bullet reaction
- Reaction products depends on structure of \bullet precursors (e.g. functional group and chain lengths)
- Reaction results depends on precursor stability towards hydroxyl oxidation

Conclusion

Available inclusive methods for total fluorine, extractable organofluorine, and oxidizable precursors can act as triggers for further actions

- develop indicator values for background and different contamination levels
- describe the method`s performances for different matrices and circumstances

References

Gribble G. Naturally occurring organofluorines. In book: Organofluorines. Springer-Verlag Berlin Heidelberg. DOI: 10.1007/10721878_5

Houtz EF; Sedlak DL. 2012. Oxidative conversion as a means of detecting precursors to perfluoroalkyl acids in urban runoff. *Environmental Science & Technology* DOI: 10.1021/es302274g

Houtz EF, Sutton R, Park JS, Sedlak M. 2016. Poly- and perfluoroalkyl substances in wastewater: Significance of unknown precursors, manufacturing shifts, and likely AFFF impacts. Water Res 95:142-149. DOI: 10.1016/j.watres.2016.02.055.

Koch A, Aro R, Wang T, Yeung LWY. 2020. Towards a comprehensive analytical workflow for the chemical characterisation of organofluorine in consumer products and environmental samples. Trac-Trends in Analytical Chemistry 123:9. DOI: 10.1016/j.trac.2019.02.024

Kärrman, A., Wang, T., Kallenborn, R., Langseter, A. M., Grønhovd, S. M., Ræder, E. M., Lyche, J. L., Yeung, L. W. Y. & et al. (2019). PFASs in the Nordic environment: Screening of Poly- and Perfluoroalkyl Substances (PFASs) and Extractable Organic Fluorine (EOF) in the Nordic Environment. Copenhagen: Nordisk Ministerråd (TemaNord 2019:515). http://dx.doi.org/10.6027/TN2019-515

Liu, YN; D'Agostino, LA; Qu, GB; Jiang, GB; Martin, JW. 2019. High-resolution mass spectrometry (HRMS) methods for nontarget discovery and characterization of poly- and perfluoroalkyl substances (PFASs) in environmental and human samples. Trac-Trends in Analytical Chemistry DOI: 10.1016/j.trac.2019.02.021 Miyake Y, Kato M, Urano K. 2007. A method for measuring semi- and non-volatile organic halogens by combustion ion chromatography. Journal of Chromatography A

1139:63-69. DOI: 10.1016/j.chroma.2006.10.078.

Ritter EE, Dickinson ME, Harron JP, Lunderberg DM, DeYoung PA, Robel AE, Field JA, Peaslee GF. 2017. PIGE as a screening tool for Per- and polyfluorinated substances in papers and textiles. Nucl Instrum Methods Phys Res Sect B-Beam Interact Mater Atoms 407:47-54. DOI: 10.1016/j.nimb.2017.05.052

Tokranov AK, Nishizawa N, Amadei CA, Zenobio JE, Pickard HM, Allen JG, Vecitis CD, Sunderland EM. 2019. How Do We Measure Poly- and Perfluoroalkyl Substances (PFASs) at the Surface of Consumer Products? Environmental Science & Technology Letters 6:38-43. DOI: 10.1021/acs.estlett.8b00600.

Wang Z, Boucher J, Scheringer M, Cousins I, Hungerbühler K. 2017. Toward a Comprehensive Global Emission Inventory of C4–C10 Perfluoroalkanesulfonic Acids (PFSAs) and Related Precursors: Focus on the Life Cycle of C8-Based Products and Ongoing Industrial Transition. Environ Sci Technol 51:4482-4493. Environmental Science & Technology 51:4482-4493

Yeung LWY, Mabury SA. 2016. Are humans exposed to increasing amounts of unidentified organofluorine? Environmental Chemistry 13:102-110. DOI: 10.1071/en15041

Yeung LWY; Eriksson U; Kärrman A. 2017. Time trend of unidentified poly- and perfluoroalky substances in sludge from wastewater treatment plants in Sweden. S-EPA report urn:nbn:se:oru:diva-61515

Wang, J., et al., Fluorine in Pharmaceutical Industry: Fluorine-Containing Drugs Introduced to the Market in the Last Decade (2001–2011). Chemical Reviews, 2014. 114(4): p. 2432-2506.

