

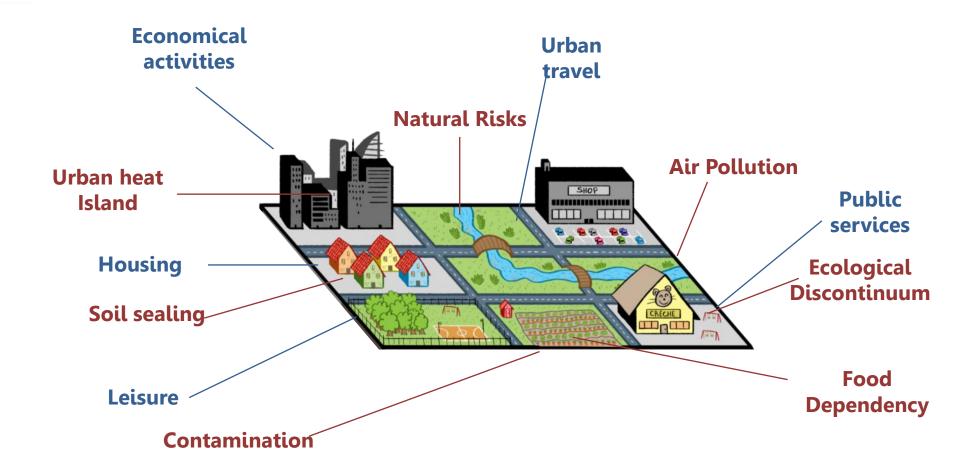
SollveR Webinar series on 'Integration of Soil Health in decision-making processes at various scales'

Recycling Brownfields: Incorporating Soil Health into urban development projects

Destisol: A decision-support tool to assess the ecosystem services provided by urban soils for better urban planning

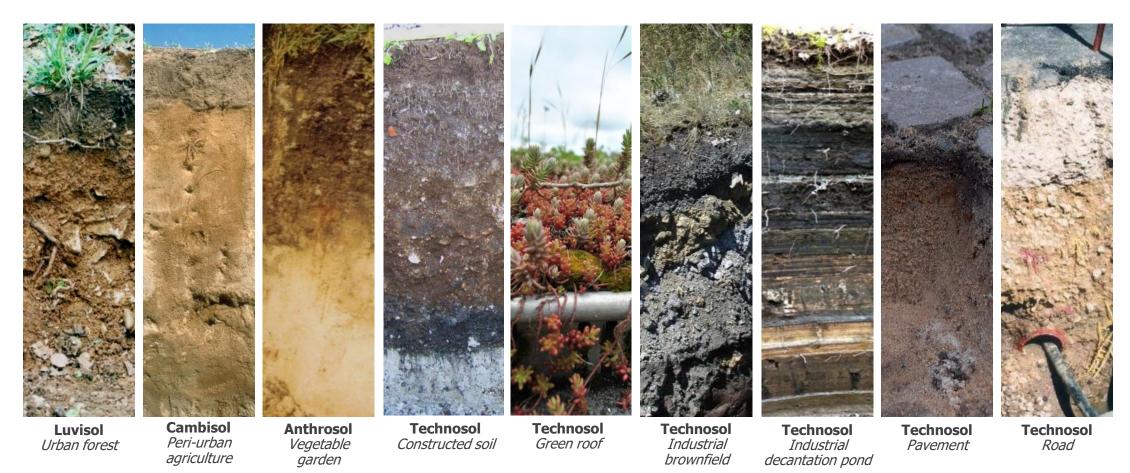
04/04/25

Pr. Geoffroy Séré
Laboratoire Sols et Environnement
geoffroy.sere@univ-lorraine.fr



Urban planning to adapt land uses to multiple issues

Urban planning to adapt land uses to multiple issues



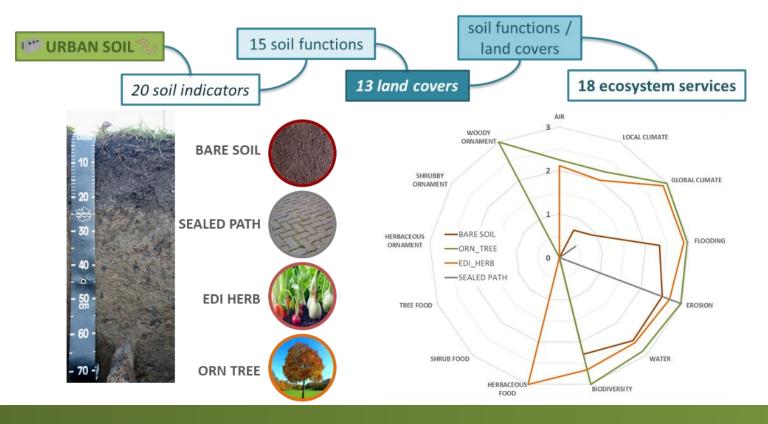
Blanchart, 2018

Urban soils are very diverse and heterogeneous

Large diversity among a gradient of anthropization

Urban soils rarely consider as a valuable resource

 Urban soils are very frequently excavated and subtituted by agricultural/forest top soil materials



How to take urban soils potential into account?

- By diagnosing the quality of in situ urban soils
- By determining compatible urban land covers based on soil properties
- By assessing ecosystem services provided by « soil + land cover »

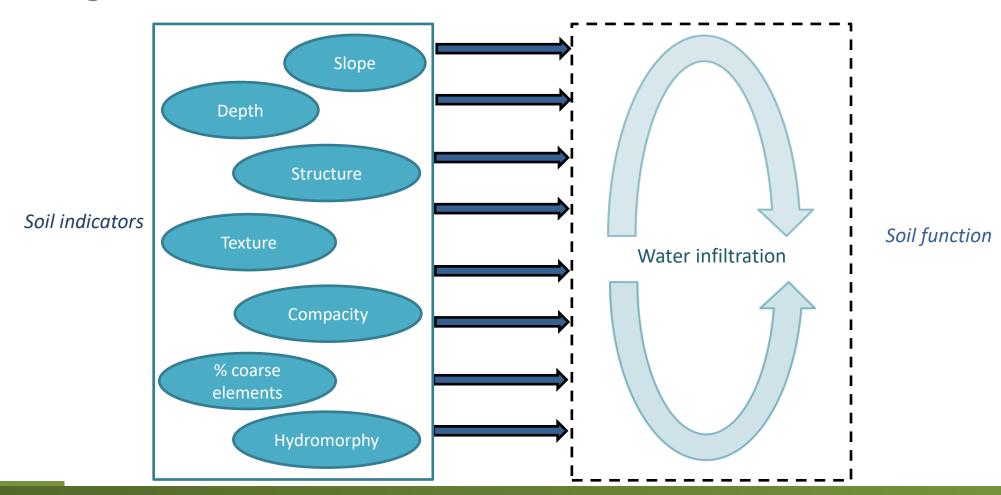
Séré et al., 2024

- o Initial study of the site (past land uses, geology, hydrology, topography, plant cover)
- Determination of homogenous zones in terms of soil cover

Former military site to be requalified into an eco-district

Biancamaria – Nancy (FR)

Description of the soils of each zone and measurement of various soil indicators



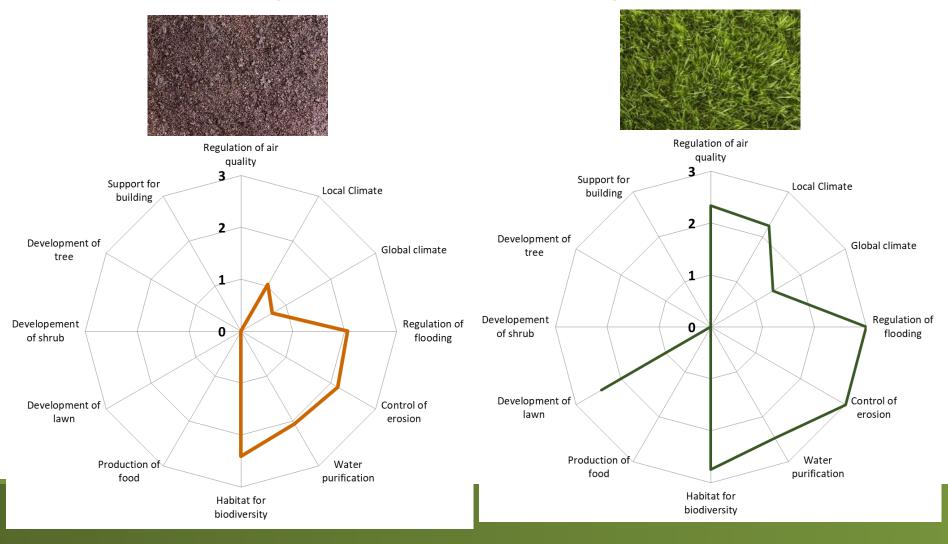
Description of the soils of each zone and measurement of various soil indicators

Soil profile		Biancamaria - Profile A				
	N° horizon	1	2	3		
	Depth (cm)	25	18	22		
	slope (%)	0				
	soil depth (cm)	75				
	colour	dark brown light brown lig		light brown		
	roots density (%)	40	1	0		
	biological activity	strong	weak	absence		
Field	soil structure	granular	blocky	blocky		
observation	textural classes	silty	silty	silty		
	compacity	weak	high	medium		
	coarse elements (%)	35,40	13,50	3,70		
	artefacts (%)	0,09	1,14	0,19		
	hydromorphy	absence	absence	absence		
	evidences of pollution	absence	absence	absence		
	рН	7,9	8,5	8,3		
	P _{Olsen}	0,168	0,049	0,042		
Lab analysis	M.O.	169	24,7	18,1		
Lab analysis	Ntot	6,08	0,673	0,571		
	C:N	16,1	21,2	18,4		
	CaCO ₃	85	62	4		

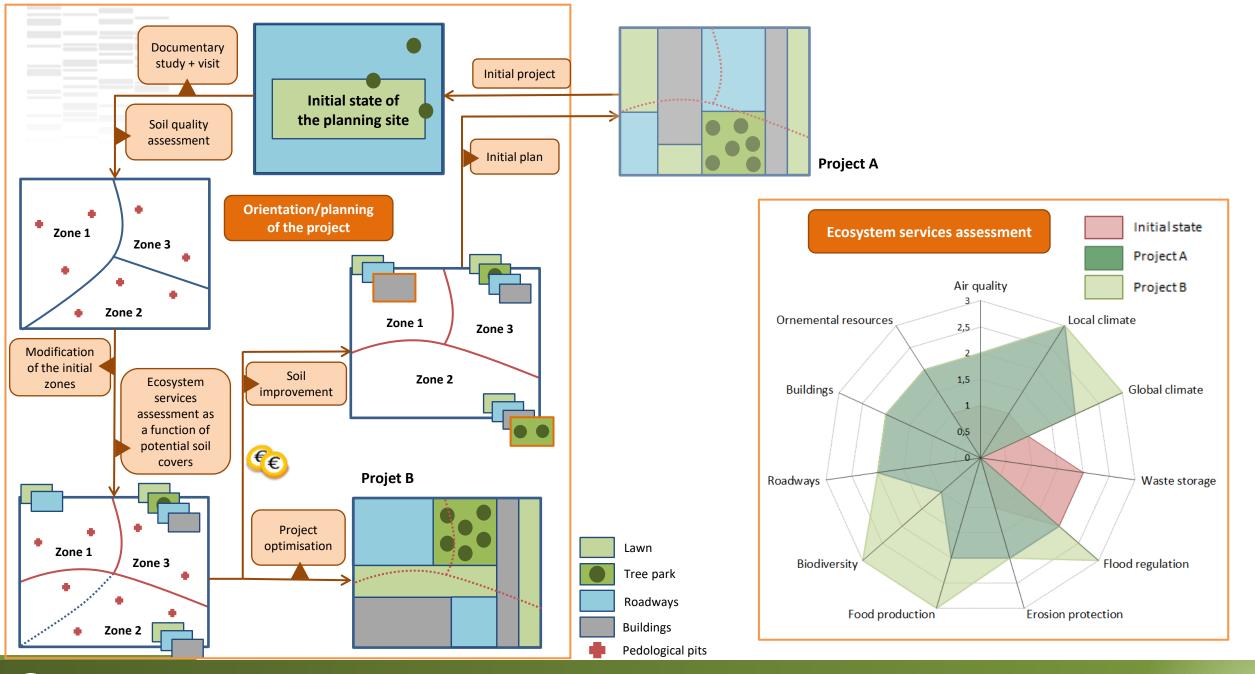
Rating of soil functions with soil indicators

Rating of soil functions with soil indicators

Soil functions		Rating
Soil maintenance	OM & nutrients recycling	2,5
Son maintenance	Erosion protection	2,3
Carbon	Carbon Carbon storage	
	Physico-chemical fertility (herbaceous)	2,3
Fertility	Physico-chemical fertility (food)	2,3
reitility	Physico-chemical fertility (shrubs)	2,5
	Physico-chemical fertility (trees)	1,9
Water	Circulation & infiltration	2,0
water	Retention	2,1
	Contamination level	2,2
Pollution	Physical retention	1,9
	Degradation	2,0
	Light roadway	1,5
Uuman astivitias	Heavy roadway	2,1
Human activities	Light building	1,8
	Heavy building	2,5



 Adequation between the rates of soil functions and land uses


	Soil functions	Rating	Building	Sealed path	Paved path	Grassed path	Bare soil	Lawn	Garden	Shrub	Tree
il maintenan	OM & nutrients recycling	2,5	0	0	0	2	0	2	2	2	2
	Erosion protection	2,3	0	0	1	1	1	1	1	1	1
Carb	on Carbon storage	2,1	0	0	0	0	0	0	0	0	0
Fertility	Physico-chemical fertility (herbaceous)	2,3	0	0	0	2	0	2	0	0	0
	Physico-chemical fertility (food)	2,3	0	0	0	0	0	0	2	0	0
	Physico-chemical fertility (shrubs)	2,5	0	0	0	0	0	0	0	2	0
	Physico-chemical fertility (trees)	1,9	0	0	0	0	0	0	0	0	2
Water	Circulation & infiltration	2,0	0	0	2	2	0	1	1	1	1
	Retention	2,1	0	0	0	2	0	1	1	2	2
Pollution	Contamination level	2,2	0	0	0	1	0	1	3	1	1
	ion Physical retention	1,9	0	0	0	0	0	0	0	0	0
	Degradation	2,0	0	0	0	0	0	0	0	0	0
uman activiti	Light roadway	1,5	0	0	0	0	0	0	0	0	0
	Heavy roadway	2,1	0	3	2	2	0	0	0	0	0
	Light building	1,8	3	0	0	0	0	0	0	0	0
	Heavy building	2,5	0	0	0	0	0	0	0	0	0
	Сотр	atibility	61	71	99	100	100	100	96	100	99

Evaluation of the ecosystem services provided by urban soils with various land uses

Available Bêta version of the Decision Support Tool

Soil Profile					
N° horizon		1	2		
	slope (%)				
	depth (cm)				
	color	brun foncé	brun		
	roots density (%)	30	10		
	biological activity	forte	moyenne		
Field	structure	grumeleuse	polyédrique fine		
observations	texture	limoneuse	limoneuse		
	compacity	faible	faible		
	coarse elements (%)	5	5		
	artefacts (%)	0	5		
	hydromorphy	absence	rédoxique < 5%		
mod 1.2. (2) Fonctionnement interne Carbone Fertilité Eau Polit					

- Allocate optimal land-use as a function of urban soils potentials
- Reduce the consumption of natural topsoil
- Optimize the ecosystem services at the scale of urban sites planning in order to tackle to specific issues (e.g. regulation of flooding, gardening)

- Anne Blanchart's PhD (2018)
- French Environmental Agency ADEME
 Destisol & SUPRA projects
- Cities of Nancy, Nantes and Marseille for the provision of urban sites
- IRSTV, Nantes, for the assistance with access to the sampling sites

